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We investigate the effect of randomness in both relationships and decisions on the evolution of cooperation.
Simulation results show, in such randomness’ presence, the system evolves more frequently to a cooperative
state than in its absence. Specifically, there is an optimal amount of randomness, which can induce the highest
level of cooperation. The mechanism of randomness promoting cooperation resembles a resonancelike fashion,
which could be of particular interest in evolutionary game dynamics in economic, biological, and social
systems.
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Cooperation is ubiquitous in the real world, ranging from
biological systems to economic and social systems. How-
ever, the unselfish, altruistic actions apparently contradict
Darwinian selection. Thus understanding the conditions for
the emergence and maintenance of cooperative behavior
among selfish individuals becomes a central issue �1�. In the
last decades, several natural mechanisms of enforcing coop-
eration have already been explored such as kin selection �2�,
retaliating behavior �3�, reciprocity �4�, voluntary participa-
tion �5�, development of reputation �6�, or spatial extensions
�7�.

Since the pioneering work on iterated games by Axelrod
�3�, the evolutionary Prisoner’s Dilemma game �PDG� as a
general metaphor for studying cooperative behavior has
drawn much attention from scientific communities. Szabó
presented a stochastic evolutionary rule to capture the
bounded rationality of individuals for better characterizing
the dynamics of games in real systems �8�. The individuals
can follow only two simple strategies: C �cooperate� or D
�defect�, described by

s = �1

0
� or �0

1
� , �1�

respectively. Each individual plays the PDG with its “neigh-
bors” defined by their spatial relationships. The total income
of the player at the site x can be expressed as

Mx = �
y��x

sx
TPsy , �2�

where sx and sy denote the strategy of node x and y. The sum
runs over all the neighboring sites of x �this set is indicated
by �x� and the payoff matrix has a rescaled form suggested
by Nowak and May �9�:

P = �1 0

b 0
� , �3�

where 1�b�2. Then, the individual x randomly selects a
neighbor y for possible updating of its strategy. The probabil-
ity that x follows the strategy of the selected node y is deter-
mined by the total payoff difference between them:

Wsx←sy
=

1

1 + exp��Mx − My�/T�
, �4�

where T characterizes the stochastic uncertainties, including
errors in decision, individual trials, etc., T=0 denotes the
complete rationality, where the individual always adopts the
best strategy determinately. While T�0, it introduces some
dynamical randomness that there is a small probability to
select the worse one. T→� denotes the complete random-
ness of the decision. This choice of W takes into account the
fact of bounded rationality of individuals in sociology and
also reflects natural selection based on the relative fitness in
terms of evolutionism. Szabó et al. studied the effect of dy-
namical randomness T on the stationary concentration of co-
operators in Ref. �10�.

In a recent paper, Perc studied the evolutionary PDG by
introducing the random disorder in the payoff matrix �11�.
The reported results indicated a resonancelike behavior that
the frequency of the cooperators reaches its maximum at an
intermediate disorder. Using a different approach, Traulsen et
al. also found that the additive noise on the classical replica-
tor dynamics can enhance the average payoff of the system
in a resonancelike manner �12�. Vainstein and Arenzon also
reported that the disorder in the underlying site diluted lat-
tices can enhance the fraction of cooperators �13�.

It is well-known that intrinsically noisy and disordered
processes can generate surprising phenomena, such as sto-
chastic resonance �14�, coherence resonance �15�, ordering
spatiotemporal chaos by disorder �16�, disorder-enhanced
synchronization �17�, ordering chaos by randomness �18�,
etc. In evolutionary games, the enhancement of the fre-
quency of cooperators at intermediate noise intensities re-*Electronic address: fqi@mcw.edu
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sembles the response of nonlinear systems to purely noisy
excitations.

Presently, much interest has been given to evolutionary
games on complex graphs or in structured population
�5,7,19,20� by considering the fact that who-meets-whom is
determined by spatial relationships or underlying networks.
Complex networks provides a natural framework to describe
the population structure. It has been shown that, in many
real-life cases, relationships among networked individuals
are neither completely random nor completely regular, but
somewhere in between �21,22�. In other words, real networks
have some degree of topological randomness. It is well-
accepted that the topology of a network often plays crucial
roles in determining the dynamics �23�. Therefore it is natu-
ral to ask whether this new type of randomness will play
some constructive roles for the dynamics of the evolutionary
games, i.e., is of benefit to the cooperation, such as stochastic
uncertainties T �10�, disordered payoff matrix �11�, noise of
replicator dynamics �12�, or disordered environments �13�.

In this Rapid Communication, we study the effects of
both the topological randomness in individual relationships
and the dynamical randomness in decision makings on the
evolution of cooperation. We found that there exists an opti-
mal amount of randomness, inducing the highest level of
cooperation. The mechanism of randomness promoting co-
operations resembles a resonancelike fashion, wherein the
randomness-induced prevalence of the “good” strategy, i.e.,
cooperations, evokes the positive effect of the topological
and dynamical randomness on the system.

To explore the topological randomness, we consider a ho-
mogeneous small-world network �HSWN� �24�. Starting
from an undirected regular graph with fixed connectivity z
and size N, a two-step circular procedure is introduced: �i�
choose two different edges randomly, which have not been
used yet in step �ii� and �ii� swap the ends of the two edges.
Here, duplicate connections and disconnected graphs are
avoided. The annealed randomness is characterized by the
parameter p, which denotes the fraction of swapped edges in
the network. �An illustration of the swap process is shown in
Fig. 1.� In contrast to the Watts-Strogatz �WS� model �21�,
this network has small-world effect together with keeping the
degree of each individual unchanged, so that the pure topo-
logical randomness can be investigated by avoiding any as-
sociated heterogeneity of degree distribution �24,25�.

In all cases below, simulations start from a population of
N=1000 individuals located on the vertices of a regular ring

graph of z=6 with periodic boundary conditions. Initially, an
equal percentage of strategies �cooperators or defectors� was
randomly distributed among the population. Equilibrium fre-
quencies of cooperators ��c� were obtained by averaging
over 5000 generations after a transient time of 10 000 gen-
erations. Each data is obtained by averaging over ten differ-
ent network realizations with ten runs for each realization.
Here, we adopted a synchronous updating rule.

Figure 2�a� shows the frequencies of cooperators �c on the
HSWN as a function of b for different values of the topo-
logical randomness P with T=0.08. In the equilibrium state,
�c is independent of the initial state and decreases monotoni-
cally as b increases. One can find that when b�1.04, coop-
erators dominate defectors significantly on the regular ring
graph �p=0� and the more randomness of the network, the
worse the cooperation is. While for b�1.04, the cooperator
is nearly extinct in the cases of p=0 and p=1, which corre-
spond to the complete regular network and the complete ran-
dom network, respectively. However, the cooperator can sur-
vive around p=0.2, i.e., intermediate topological
randomness.

The dependence of �c on the topological randomness p is
presented in Fig. 2�b�. It illustrates that there is a clear maxi-
mum �c around p=0.2, where cooperation can be revitalized
and maintained for substantially large values of b. This phe-
nomenon reveals that there exists somewhat resonant behav-
iors reflected by the optimal cooperation level at intermedi-
ate topological randomness, similar to the effects of noise
and disorder in nonlinear systems. However, it is worth men-
tioning that the dynamics leading to these equilibriums is the
same, and the resonant dependence of cooperation on p re-
sults from the changes of the equilibrium states. Moreover, in
Fig. 2�b�, one can find that as b increases, the positive effect
of topological randomness on cooperation is restricted by the
favored defection action, which is demonstrated by the re-
duction of the maximum value of �c.

In the case of regular ring graph, the local spatial relation-
ship constrains the spreading of cooperators. However, when
p�0, the shortcut generated by the edge-swapping reduces
the average distance of the relationship network and pro-

FIG. 1. �a� Illustration of a regular ring graph with connectivity
z=4. Two edges are chosen and marked by thick lines. �b� Swap the
ends of the two chosen edges. The swapped edges are marked by
thick lines.

FIG. 2. �Color online� �a� The frequencies of cooperators �c vs
the temptation to defect b for p=0, 0.2, and 1, respectively, with
T=0.08. �b� �c as a function of the topological randomness p with
various values of the temptation to defect b for T=0.08. The lines
are used to guide eyes.
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motes the strategy spreading efficiency, which induces the
survival and enhancement of cooperation. At this point, the
individuals in the system can keep clustering locally, mean-
while they can communicate to each other more effectively
due to the random shortcuts. As p→1, where the edges are
exchanged sufficiently, the spatial relationships of the indi-
viduals are completely random and the system satisfies the
mean-field approximation. Based on the classical mean-field
theory, the average payoff for the C and D strategies are
MC=z�c and MD=z�cb, where MD�MC always since b�1.
According to the dynamical rule �4�, we can write down the
following equation for the motion of the frequency of coop-
erators:

��c

�t
= �c�1 − �c��WD←C − WC←D�

= − �c�1 − �c�tanh�MD − MC

2T
� . �5�

It indicates that �c tends to zero for the arbitrary value of T
as MD�MC. On the other hand, in the absence of topologi-
cal randomness �p=0�, the regular relationship graph can be
considered as a one-dimensional system in which coopera-
tors also die out �26�. While in the optimal region of p, the
underlying network has the “small-world” property: the short
average distance promotes the spreading of cooperators; the
common cluster structure induces the clustering of coopera-
tors, leading to the surviving and enhancement of coopera-
tion �19�. Thus the optimal topological randomness p
emerges.

To quantify the ability of topological randomness p to
facilitate and maintain cooperation for various b more pre-
cisely, we study �c depending on b and p together, as shown
in Fig. 3�a�. One can find that when b�1.04, �c is a mono-
tonically decreasing function of p. We call it the harmful
region �denoted by II in Fig. 3�a�� because the topological
randomness p always decreases �c. While for b�1.04 �the
region is denoted by I in Fig. 3�a��, there exists an optimal
level of p around 0.2, resulting in the maximum value of �c.
The positive effect of the appropriate topological random-
ness p on the dynamics indicates the existence of an inter-
esting resonancelike manner in the evolutionary game. Thus
we call I the resonant region. In fact, there exists a region III
beyond the shown range of b in Fig. 3�a�, where the coop-
erators vanish and there is no p that can persist or enhance
the cooperation. We call it the absorbing region.

Besides the topological randomness p, we have studied
the effect of the dynamical randomness T. Figure 3�b� illus-
trates the phase diagram of the three regions of �c in the
parameter space �b ,T�. It shows clearly that as the dynamical
randomness T increases, the resonant region reduces, i.e., the
area of the range of b where the optimal p can promote the
cooperation decreases, indicating the constructive effect of
the optimal topological randomness is restricted by the
higher dynamical randomness.

To investigate the combined effect of both the topological
randomness and the dynamical randomness on the evolution-
ary dynamics, we fix b=1.08, and calculate �c in dependence
on various p and T, as shown in Fig. 4. It is found that there

exists a clear “optimal island” in the parameter space �T , p�
where �c reaches the highest value, indicating that the coop-
eration can be promoted by both the appropriate topological
and the dynamical randomness. In other words, the reso-
nance induced by the dynamical randomness can be en-
hanced by the topological randomness, just as the noise-
induced temporal and spatiotemporal order can be greatly
enhanced by an appropriately pronounced small-world con-
nectivity of coupled elements �27�.

In addition, we study the PDG on the WS network �21� to
give a comparison with the cases on HSWNs �28�. In Fig. 5,
we calculate the dependence of �c on the rewiring probability
pr of the WS model. Contrary to the results in Fig. 2�b�, there
is not any optimal amount of the topological randomness.
Instead, �c rapidly approaches a plateau at pr=0.2, which is
the optimal value in the case of HSWNs. Since the only

FIG. 3. �Color online� �a� The frequencies of cooperators �c vs
the parameter space �b , p� for T=0.08. This figure illustrates two
regions for b: I is the resonant region where there is an optimal
amount of topological randomness p enhancing �c; II is the harmful
region where the topological randomness p decreases the level of
the cooperation �c. In fact, there exists a region III beyond the
shown range of b in this figure, where the cooperators vanish and
there is no p that can persist or enhance the cooperation. We call it
the absorbing region. �b� The phase diagram of the three regions of
�c in the parameter space �b ,T�. It illustrates that the resonant re-
gion decreases as the dynamical randomness T increases.

FIG. 4. �Color online� The frequencies of cooperators �c vs the
parameter space �T , p� for fixed b=1.08.
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difference between the HSWN and the WS model is that the
variance of the degrees in the latter is nonzero �24�, we con-
clude that when pr is over 0.2, �c can be enhanced consider-
ably as a result of the redundant heterogeneity on relation-
ships among individuals. Moreover, due to the additive
heterogeneity, the plateau in Fig. 5 is clearly higher than the

corresponding maximal values in Fig. 2�b�. Thus the plateau
of �c is the combined effect of the topological randomness
and the heterogeneous spatial relationships.

To summarize, we have studied the effects of both the
topological randomness and the dynamical randomness on
the evolutionary Prisoner’s Dilemma game and found that
there exists an optimal amount of randomness, leading to the
highest level of cooperation. The mechanism of randomness
promoting cooperation resembles an interesting resonance-
like phenomenon, wherein the randomness-induced preva-
lence of the cooperation evokes the positive role of the to-
pological and dynamical randomness in the system.
Moreover, we find that the heterogeneity in the underlying
relationship net also enhances the cooperation. Although our
work is exclusively based on the evolutionary Prisoner’s Di-
lemma game, the “resonant” behavior may play a significant
role in other styles of evolutionary dynamics.
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